* Step 1: WeightGap WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            a__add(X1,X2) -> add(X1,X2)
            a__add(0(),X) -> mark(X)
            a__add(s(X),Y) -> s(add(X,Y))
            a__and(X1,X2) -> and(X1,X2)
            a__and(false(),Y) -> false()
            a__and(true(),X) -> mark(X)
            a__first(X1,X2) -> first(X1,X2)
            a__first(0(),X) -> nil()
            a__first(s(X),cons(Y,Z)) -> cons(Y,first(X,Z))
            a__from(X) -> cons(X,from(s(X)))
            a__from(X) -> from(X)
            a__if(X1,X2,X3) -> if(X1,X2,X3)
            a__if(false(),X,Y) -> mark(Y)
            a__if(true(),X,Y) -> mark(X)
            mark(0()) -> 0()
            mark(add(X1,X2)) -> a__add(mark(X1),X2)
            mark(and(X1,X2)) -> a__and(mark(X1),X2)
            mark(cons(X1,X2)) -> cons(X1,X2)
            mark(false()) -> false()
            mark(first(X1,X2)) -> a__first(mark(X1),mark(X2))
            mark(from(X)) -> a__from(X)
            mark(if(X1,X2,X3)) -> a__if(mark(X1),X2,X3)
            mark(nil()) -> nil()
            mark(s(X)) -> s(X)
            mark(true()) -> true()
        - Signature:
            {a__add/2,a__and/2,a__first/2,a__from/1,a__if/3,mark/1} / {0/0,add/2,and/2,cons/2,false/0,first/2,from/1
            ,if/3,nil/0,s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__add,a__and,a__first,a__from,a__if
            ,mark} and constructors {0,add,and,cons,false,first,from,if,nil,s,true}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(a__add) = {1},
            uargs(a__and) = {1},
            uargs(a__first) = {1,2},
            uargs(a__if) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                   p(0) = [4]                  
              p(a__add) = [1] x1 + [0]         
              p(a__and) = [1] x1 + [3]         
            p(a__first) = [1] x1 + [1] x2 + [0]
             p(a__from) = [0]                  
               p(a__if) = [1] x1 + [0]         
                 p(add) = [0]                  
                 p(and) = [0]                  
                p(cons) = [0]                  
               p(false) = [0]                  
               p(first) = [0]                  
                p(from) = [0]                  
                  p(if) = [0]                  
                p(mark) = [4]                  
                 p(nil) = [0]                  
                   p(s) = [2]                  
                p(true) = [5]                  
          
          Following rules are strictly oriented:
                     a__and(X1,X2) = [1] X1 + [3]      
                                   > [0]               
                                   = and(X1,X2)        
          
                 a__and(false(),Y) = [3]               
                                   > [0]               
                                   = false()           
          
                  a__and(true(),X) = [8]               
                                   > [4]               
                                   = mark(X)           
          
                   a__first(0(),X) = [1] X + [4]       
                                   > [0]               
                                   = nil()             
          
          a__first(s(X),cons(Y,Z)) = [2]               
                                   > [0]               
                                   = cons(Y,first(X,Z))
          
                 a__if(true(),X,Y) = [5]               
                                   > [4]               
                                   = mark(X)           
          
                 mark(cons(X1,X2)) = [4]               
                                   > [0]               
                                   = cons(X1,X2)       
          
                     mark(false()) = [4]               
                                   > [0]               
                                   = false()           
          
                     mark(from(X)) = [4]               
                                   > [0]               
                                   = a__from(X)        
          
                       mark(nil()) = [4]               
                                   > [0]               
                                   = nil()             
          
                        mark(s(X)) = [4]               
                                   > [2]               
                                   = s(X)              
          
          
          Following rules are (at-least) weakly oriented:
               a__add(X1,X2) =  [1] X1 + [0]               
                             >= [0]                        
                             =  add(X1,X2)                 
          
               a__add(0(),X) =  [4]                        
                             >= [4]                        
                             =  mark(X)                    
          
              a__add(s(X),Y) =  [2]                        
                             >= [2]                        
                             =  s(add(X,Y))                
          
             a__first(X1,X2) =  [1] X1 + [1] X2 + [0]      
                             >= [0]                        
                             =  first(X1,X2)               
          
                  a__from(X) =  [0]                        
                             >= [0]                        
                             =  cons(X,from(s(X)))         
          
                  a__from(X) =  [0]                        
                             >= [0]                        
                             =  from(X)                    
          
             a__if(X1,X2,X3) =  [1] X1 + [0]               
                             >= [0]                        
                             =  if(X1,X2,X3)               
          
          a__if(false(),X,Y) =  [0]                        
                             >= [4]                        
                             =  mark(Y)                    
          
                   mark(0()) =  [4]                        
                             >= [4]                        
                             =  0()                        
          
            mark(add(X1,X2)) =  [4]                        
                             >= [4]                        
                             =  a__add(mark(X1),X2)        
          
            mark(and(X1,X2)) =  [4]                        
                             >= [7]                        
                             =  a__and(mark(X1),X2)        
          
          mark(first(X1,X2)) =  [4]                        
                             >= [8]                        
                             =  a__first(mark(X1),mark(X2))
          
          mark(if(X1,X2,X3)) =  [4]                        
                             >= [4]                        
                             =  a__if(mark(X1),X2,X3)      
          
                mark(true()) =  [4]                        
                             >= [5]                        
                             =  true()                     
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
* Step 2: WeightGap WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            a__add(X1,X2) -> add(X1,X2)
            a__add(0(),X) -> mark(X)
            a__add(s(X),Y) -> s(add(X,Y))
            a__first(X1,X2) -> first(X1,X2)
            a__from(X) -> cons(X,from(s(X)))
            a__from(X) -> from(X)
            a__if(X1,X2,X3) -> if(X1,X2,X3)
            a__if(false(),X,Y) -> mark(Y)
            mark(0()) -> 0()
            mark(add(X1,X2)) -> a__add(mark(X1),X2)
            mark(and(X1,X2)) -> a__and(mark(X1),X2)
            mark(first(X1,X2)) -> a__first(mark(X1),mark(X2))
            mark(if(X1,X2,X3)) -> a__if(mark(X1),X2,X3)
            mark(true()) -> true()
        - Weak TRS:
            a__and(X1,X2) -> and(X1,X2)
            a__and(false(),Y) -> false()
            a__and(true(),X) -> mark(X)
            a__first(0(),X) -> nil()
            a__first(s(X),cons(Y,Z)) -> cons(Y,first(X,Z))
            a__if(true(),X,Y) -> mark(X)
            mark(cons(X1,X2)) -> cons(X1,X2)
            mark(false()) -> false()
            mark(from(X)) -> a__from(X)
            mark(nil()) -> nil()
            mark(s(X)) -> s(X)
        - Signature:
            {a__add/2,a__and/2,a__first/2,a__from/1,a__if/3,mark/1} / {0/0,add/2,and/2,cons/2,false/0,first/2,from/1
            ,if/3,nil/0,s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__add,a__and,a__first,a__from,a__if
            ,mark} and constructors {0,add,and,cons,false,first,from,if,nil,s,true}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(a__add) = {1},
            uargs(a__and) = {1},
            uargs(a__first) = {1,2},
            uargs(a__if) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                   p(0) = [5]                           
              p(a__add) = [1] x1 + [1] x2 + [0]         
              p(a__and) = [1] x1 + [1] x2 + [4]         
            p(a__first) = [1] x1 + [1] x2 + [0]         
             p(a__from) = [0]                           
               p(a__if) = [1] x1 + [1] x2 + [1] x3 + [5]
                 p(add) = [1] x1 + [1] x2 + [0]         
                 p(and) = [1] x1 + [1] x2 + [0]         
                p(cons) = [1]                           
               p(false) = [2]                           
               p(first) = [1] x1 + [1] x2 + [2]         
                p(from) = [0]                           
                  p(if) = [1] x1 + [1] x2 + [1] x3 + [3]
                p(mark) = [1] x1 + [1]                  
                 p(nil) = [4]                           
                   p(s) = [1] x1 + [0]                  
                p(true) = [2]                           
          
          Following rules are strictly oriented:
               a__add(0(),X) = [1] X + [5]                   
                             > [1] X + [1]                   
                             = mark(X)                       
          
             a__if(X1,X2,X3) = [1] X1 + [1] X2 + [1] X3 + [5]
                             > [1] X1 + [1] X2 + [1] X3 + [3]
                             = if(X1,X2,X3)                  
          
          a__if(false(),X,Y) = [1] X + [1] Y + [7]           
                             > [1] Y + [1]                   
                             = mark(Y)                       
          
                   mark(0()) = [6]                           
                             > [5]                           
                             = 0()                           
          
          mark(first(X1,X2)) = [1] X1 + [1] X2 + [3]         
                             > [1] X1 + [1] X2 + [2]         
                             = a__first(mark(X1),mark(X2))   
          
                mark(true()) = [3]                           
                             > [2]                           
                             = true()                        
          
          
          Following rules are (at-least) weakly oriented:
                     a__add(X1,X2) =  [1] X1 + [1] X2 + [0]         
                                   >= [1] X1 + [1] X2 + [0]         
                                   =  add(X1,X2)                    
          
                    a__add(s(X),Y) =  [1] X + [1] Y + [0]           
                                   >= [1] X + [1] Y + [0]           
                                   =  s(add(X,Y))                   
          
                     a__and(X1,X2) =  [1] X1 + [1] X2 + [4]         
                                   >= [1] X1 + [1] X2 + [0]         
                                   =  and(X1,X2)                    
          
                 a__and(false(),Y) =  [1] Y + [6]                   
                                   >= [2]                           
                                   =  false()                       
          
                  a__and(true(),X) =  [1] X + [6]                   
                                   >= [1] X + [1]                   
                                   =  mark(X)                       
          
                   a__first(X1,X2) =  [1] X1 + [1] X2 + [0]         
                                   >= [1] X1 + [1] X2 + [2]         
                                   =  first(X1,X2)                  
          
                   a__first(0(),X) =  [1] X + [5]                   
                                   >= [4]                           
                                   =  nil()                         
          
          a__first(s(X),cons(Y,Z)) =  [1] X + [1]                   
                                   >= [1]                           
                                   =  cons(Y,first(X,Z))            
          
                        a__from(X) =  [0]                           
                                   >= [1]                           
                                   =  cons(X,from(s(X)))            
          
                        a__from(X) =  [0]                           
                                   >= [0]                           
                                   =  from(X)                       
          
                 a__if(true(),X,Y) =  [1] X + [1] Y + [7]           
                                   >= [1] X + [1]                   
                                   =  mark(X)                       
          
                  mark(add(X1,X2)) =  [1] X1 + [1] X2 + [1]         
                                   >= [1] X1 + [1] X2 + [1]         
                                   =  a__add(mark(X1),X2)           
          
                  mark(and(X1,X2)) =  [1] X1 + [1] X2 + [1]         
                                   >= [1] X1 + [1] X2 + [5]         
                                   =  a__and(mark(X1),X2)           
          
                 mark(cons(X1,X2)) =  [2]                           
                                   >= [1]                           
                                   =  cons(X1,X2)                   
          
                     mark(false()) =  [3]                           
                                   >= [2]                           
                                   =  false()                       
          
                     mark(from(X)) =  [1]                           
                                   >= [0]                           
                                   =  a__from(X)                    
          
                mark(if(X1,X2,X3)) =  [1] X1 + [1] X2 + [1] X3 + [4]
                                   >= [1] X1 + [1] X2 + [1] X3 + [6]
                                   =  a__if(mark(X1),X2,X3)         
          
                       mark(nil()) =  [5]                           
                                   >= [4]                           
                                   =  nil()                         
          
                        mark(s(X)) =  [1] X + [1]                   
                                   >= [1] X + [0]                   
                                   =  s(X)                          
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
* Step 3: MI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            a__add(X1,X2) -> add(X1,X2)
            a__add(s(X),Y) -> s(add(X,Y))
            a__first(X1,X2) -> first(X1,X2)
            a__from(X) -> cons(X,from(s(X)))
            a__from(X) -> from(X)
            mark(add(X1,X2)) -> a__add(mark(X1),X2)
            mark(and(X1,X2)) -> a__and(mark(X1),X2)
            mark(if(X1,X2,X3)) -> a__if(mark(X1),X2,X3)
        - Weak TRS:
            a__add(0(),X) -> mark(X)
            a__and(X1,X2) -> and(X1,X2)
            a__and(false(),Y) -> false()
            a__and(true(),X) -> mark(X)
            a__first(0(),X) -> nil()
            a__first(s(X),cons(Y,Z)) -> cons(Y,first(X,Z))
            a__if(X1,X2,X3) -> if(X1,X2,X3)
            a__if(false(),X,Y) -> mark(Y)
            a__if(true(),X,Y) -> mark(X)
            mark(0()) -> 0()
            mark(cons(X1,X2)) -> cons(X1,X2)
            mark(false()) -> false()
            mark(first(X1,X2)) -> a__first(mark(X1),mark(X2))
            mark(from(X)) -> a__from(X)
            mark(nil()) -> nil()
            mark(s(X)) -> s(X)
            mark(true()) -> true()
        - Signature:
            {a__add/2,a__and/2,a__first/2,a__from/1,a__if/3,mark/1} / {0/0,add/2,and/2,cons/2,false/0,first/2,from/1
            ,if/3,nil/0,s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__add,a__and,a__first,a__from,a__if
            ,mark} and constructors {0,add,and,cons,false,first,from,if,nil,s,true}
    + Applied Processor:
        MI {miKind = MaximalMatrix (UpperTriangular (Multiplicity Nothing)), miDimension = 1, miUArgs = UArgs, miURules = URules, miSelector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind MaximalMatrix (UpperTriangular (Multiplicity Nothing)):
        
        The following argument positions are considered usable:
          uargs(a__add) = {1},
          uargs(a__and) = {1},
          uargs(a__first) = {1,2},
          uargs(a__if) = {1}
        
        Following symbols are considered usable:
          {a__add,a__and,a__first,a__from,a__if,mark}
        TcT has computed the following interpretation:
                 p(0) = [2]                              
            p(a__add) = [1] x_1 + [8] x_2 + [0]          
            p(a__and) = [1] x_1 + [8] x_2 + [0]          
          p(a__first) = [1] x_1 + [1] x_2 + [15]         
           p(a__from) = [0]                              
             p(a__if) = [1] x_1 + [8] x_2 + [8] x_3 + [0]
               p(add) = [1] x_1 + [1] x_2 + [0]          
               p(and) = [1] x_1 + [1] x_2 + [0]          
              p(cons) = [0]                              
             p(false) = [1]                              
             p(first) = [1] x_1 + [1] x_2 + [2]          
              p(from) = [0]                              
                p(if) = [1] x_1 + [1] x_2 + [1] x_3 + [0]
              p(mark) = [8] x_1 + [1]                    
               p(nil) = [0]                              
                 p(s) = [0]                              
              p(true) = [2]                              
        
        Following rules are strictly oriented:
        a__first(X1,X2) = [1] X1 + [1] X2 + [15]
                        > [1] X1 + [1] X2 + [2] 
                        = first(X1,X2)          
        
        
        Following rules are (at-least) weakly oriented:
                   a__add(X1,X2) =  [1] X1 + [8] X2 + [0]         
                                 >= [1] X1 + [1] X2 + [0]         
                                 =  add(X1,X2)                    
        
                   a__add(0(),X) =  [8] X + [2]                   
                                 >= [8] X + [1]                   
                                 =  mark(X)                       
        
                  a__add(s(X),Y) =  [8] Y + [0]                   
                                 >= [0]                           
                                 =  s(add(X,Y))                   
        
                   a__and(X1,X2) =  [1] X1 + [8] X2 + [0]         
                                 >= [1] X1 + [1] X2 + [0]         
                                 =  and(X1,X2)                    
        
               a__and(false(),Y) =  [8] Y + [1]                   
                                 >= [1]                           
                                 =  false()                       
        
                a__and(true(),X) =  [8] X + [2]                   
                                 >= [8] X + [1]                   
                                 =  mark(X)                       
        
                 a__first(0(),X) =  [1] X + [17]                  
                                 >= [0]                           
                                 =  nil()                         
        
        a__first(s(X),cons(Y,Z)) =  [15]                          
                                 >= [0]                           
                                 =  cons(Y,first(X,Z))            
        
                      a__from(X) =  [0]                           
                                 >= [0]                           
                                 =  cons(X,from(s(X)))            
        
                      a__from(X) =  [0]                           
                                 >= [0]                           
                                 =  from(X)                       
        
                 a__if(X1,X2,X3) =  [1] X1 + [8] X2 + [8] X3 + [0]
                                 >= [1] X1 + [1] X2 + [1] X3 + [0]
                                 =  if(X1,X2,X3)                  
        
              a__if(false(),X,Y) =  [8] X + [8] Y + [1]           
                                 >= [8] Y + [1]                   
                                 =  mark(Y)                       
        
               a__if(true(),X,Y) =  [8] X + [8] Y + [2]           
                                 >= [8] X + [1]                   
                                 =  mark(X)                       
        
                       mark(0()) =  [17]                          
                                 >= [2]                           
                                 =  0()                           
        
                mark(add(X1,X2)) =  [8] X1 + [8] X2 + [1]         
                                 >= [8] X1 + [8] X2 + [1]         
                                 =  a__add(mark(X1),X2)           
        
                mark(and(X1,X2)) =  [8] X1 + [8] X2 + [1]         
                                 >= [8] X1 + [8] X2 + [1]         
                                 =  a__and(mark(X1),X2)           
        
               mark(cons(X1,X2)) =  [1]                           
                                 >= [0]                           
                                 =  cons(X1,X2)                   
        
                   mark(false()) =  [9]                           
                                 >= [1]                           
                                 =  false()                       
        
              mark(first(X1,X2)) =  [8] X1 + [8] X2 + [17]        
                                 >= [8] X1 + [8] X2 + [17]        
                                 =  a__first(mark(X1),mark(X2))   
        
                   mark(from(X)) =  [1]                           
                                 >= [0]                           
                                 =  a__from(X)                    
        
              mark(if(X1,X2,X3)) =  [8] X1 + [8] X2 + [8] X3 + [1]
                                 >= [8] X1 + [8] X2 + [8] X3 + [1]
                                 =  a__if(mark(X1),X2,X3)         
        
                     mark(nil()) =  [1]                           
                                 >= [0]                           
                                 =  nil()                         
        
                      mark(s(X)) =  [1]                           
                                 >= [0]                           
                                 =  s(X)                          
        
                    mark(true()) =  [17]                          
                                 >= [2]                           
                                 =  true()                        
        
* Step 4: WeightGap WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            a__add(X1,X2) -> add(X1,X2)
            a__add(s(X),Y) -> s(add(X,Y))
            a__from(X) -> cons(X,from(s(X)))
            a__from(X) -> from(X)
            mark(add(X1,X2)) -> a__add(mark(X1),X2)
            mark(and(X1,X2)) -> a__and(mark(X1),X2)
            mark(if(X1,X2,X3)) -> a__if(mark(X1),X2,X3)
        - Weak TRS:
            a__add(0(),X) -> mark(X)
            a__and(X1,X2) -> and(X1,X2)
            a__and(false(),Y) -> false()
            a__and(true(),X) -> mark(X)
            a__first(X1,X2) -> first(X1,X2)
            a__first(0(),X) -> nil()
            a__first(s(X),cons(Y,Z)) -> cons(Y,first(X,Z))
            a__if(X1,X2,X3) -> if(X1,X2,X3)
            a__if(false(),X,Y) -> mark(Y)
            a__if(true(),X,Y) -> mark(X)
            mark(0()) -> 0()
            mark(cons(X1,X2)) -> cons(X1,X2)
            mark(false()) -> false()
            mark(first(X1,X2)) -> a__first(mark(X1),mark(X2))
            mark(from(X)) -> a__from(X)
            mark(nil()) -> nil()
            mark(s(X)) -> s(X)
            mark(true()) -> true()
        - Signature:
            {a__add/2,a__and/2,a__first/2,a__from/1,a__if/3,mark/1} / {0/0,add/2,and/2,cons/2,false/0,first/2,from/1
            ,if/3,nil/0,s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__add,a__and,a__first,a__from,a__if
            ,mark} and constructors {0,add,and,cons,false,first,from,if,nil,s,true}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(a__add) = {1},
            uargs(a__and) = {1},
            uargs(a__first) = {1,2},
            uargs(a__if) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                   p(0) = [0]                  
              p(a__add) = [1] x1 + [4]         
              p(a__and) = [1] x1 + [2]         
            p(a__first) = [1] x1 + [1] x2 + [0]
             p(a__from) = [0]                  
               p(a__if) = [1] x1 + [4]         
                 p(add) = [0]                  
                 p(and) = [0]                  
                p(cons) = [0]                  
               p(false) = [0]                  
               p(first) = [1] x2 + [0]         
                p(from) = [0]                  
                  p(if) = [0]                  
                p(mark) = [0]                  
                 p(nil) = [0]                  
                   p(s) = [0]                  
                p(true) = [0]                  
          
          Following rules are strictly oriented:
           a__add(X1,X2) = [1] X1 + [4]
                         > [0]         
                         = add(X1,X2)  
          
          a__add(s(X),Y) = [4]         
                         > [0]         
                         = s(add(X,Y)) 
          
          
          Following rules are (at-least) weakly oriented:
                     a__add(0(),X) =  [4]                        
                                   >= [0]                        
                                   =  mark(X)                    
          
                     a__and(X1,X2) =  [1] X1 + [2]               
                                   >= [0]                        
                                   =  and(X1,X2)                 
          
                 a__and(false(),Y) =  [2]                        
                                   >= [0]                        
                                   =  false()                    
          
                  a__and(true(),X) =  [2]                        
                                   >= [0]                        
                                   =  mark(X)                    
          
                   a__first(X1,X2) =  [1] X1 + [1] X2 + [0]      
                                   >= [1] X2 + [0]               
                                   =  first(X1,X2)               
          
                   a__first(0(),X) =  [1] X + [0]                
                                   >= [0]                        
                                   =  nil()                      
          
          a__first(s(X),cons(Y,Z)) =  [0]                        
                                   >= [0]                        
                                   =  cons(Y,first(X,Z))         
          
                        a__from(X) =  [0]                        
                                   >= [0]                        
                                   =  cons(X,from(s(X)))         
          
                        a__from(X) =  [0]                        
                                   >= [0]                        
                                   =  from(X)                    
          
                   a__if(X1,X2,X3) =  [1] X1 + [4]               
                                   >= [0]                        
                                   =  if(X1,X2,X3)               
          
                a__if(false(),X,Y) =  [4]                        
                                   >= [0]                        
                                   =  mark(Y)                    
          
                 a__if(true(),X,Y) =  [4]                        
                                   >= [0]                        
                                   =  mark(X)                    
          
                         mark(0()) =  [0]                        
                                   >= [0]                        
                                   =  0()                        
          
                  mark(add(X1,X2)) =  [0]                        
                                   >= [4]                        
                                   =  a__add(mark(X1),X2)        
          
                  mark(and(X1,X2)) =  [0]                        
                                   >= [2]                        
                                   =  a__and(mark(X1),X2)        
          
                 mark(cons(X1,X2)) =  [0]                        
                                   >= [0]                        
                                   =  cons(X1,X2)                
          
                     mark(false()) =  [0]                        
                                   >= [0]                        
                                   =  false()                    
          
                mark(first(X1,X2)) =  [0]                        
                                   >= [0]                        
                                   =  a__first(mark(X1),mark(X2))
          
                     mark(from(X)) =  [0]                        
                                   >= [0]                        
                                   =  a__from(X)                 
          
                mark(if(X1,X2,X3)) =  [0]                        
                                   >= [4]                        
                                   =  a__if(mark(X1),X2,X3)      
          
                       mark(nil()) =  [0]                        
                                   >= [0]                        
                                   =  nil()                      
          
                        mark(s(X)) =  [0]                        
                                   >= [0]                        
                                   =  s(X)                       
          
                      mark(true()) =  [0]                        
                                   >= [0]                        
                                   =  true()                     
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
* Step 5: WeightGap WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            a__from(X) -> cons(X,from(s(X)))
            a__from(X) -> from(X)
            mark(add(X1,X2)) -> a__add(mark(X1),X2)
            mark(and(X1,X2)) -> a__and(mark(X1),X2)
            mark(if(X1,X2,X3)) -> a__if(mark(X1),X2,X3)
        - Weak TRS:
            a__add(X1,X2) -> add(X1,X2)
            a__add(0(),X) -> mark(X)
            a__add(s(X),Y) -> s(add(X,Y))
            a__and(X1,X2) -> and(X1,X2)
            a__and(false(),Y) -> false()
            a__and(true(),X) -> mark(X)
            a__first(X1,X2) -> first(X1,X2)
            a__first(0(),X) -> nil()
            a__first(s(X),cons(Y,Z)) -> cons(Y,first(X,Z))
            a__if(X1,X2,X3) -> if(X1,X2,X3)
            a__if(false(),X,Y) -> mark(Y)
            a__if(true(),X,Y) -> mark(X)
            mark(0()) -> 0()
            mark(cons(X1,X2)) -> cons(X1,X2)
            mark(false()) -> false()
            mark(first(X1,X2)) -> a__first(mark(X1),mark(X2))
            mark(from(X)) -> a__from(X)
            mark(nil()) -> nil()
            mark(s(X)) -> s(X)
            mark(true()) -> true()
        - Signature:
            {a__add/2,a__and/2,a__first/2,a__from/1,a__if/3,mark/1} / {0/0,add/2,and/2,cons/2,false/0,first/2,from/1
            ,if/3,nil/0,s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__add,a__and,a__first,a__from,a__if
            ,mark} and constructors {0,add,and,cons,false,first,from,if,nil,s,true}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(a__add) = {1},
            uargs(a__and) = {1},
            uargs(a__first) = {1,2},
            uargs(a__if) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                   p(0) = [1]                           
              p(a__add) = [1] x1 + [2] x2 + [4]         
              p(a__and) = [1] x1 + [2] x2 + [4]         
            p(a__first) = [1] x1 + [1] x2 + [0]         
             p(a__from) = [1] x1 + [4]                  
               p(a__if) = [1] x1 + [2] x2 + [2] x3 + [1]
                 p(add) = [1] x1 + [1] x2 + [0]         
                 p(and) = [1] x1 + [1] x2 + [0]         
                p(cons) = [1] x1 + [0]                  
               p(false) = [0]                           
               p(first) = [1] x1 + [1] x2 + [0]         
                p(from) = [1] x1 + [2]                  
                  p(if) = [1] x1 + [1] x2 + [1] x3 + [0]
                p(mark) = [2] x1 + [0]                  
                 p(nil) = [0]                           
                   p(s) = [0]                           
                p(true) = [4]                           
          
          Following rules are strictly oriented:
          a__from(X) = [1] X + [4]       
                     > [1] X + [0]       
                     = cons(X,from(s(X)))
          
          a__from(X) = [1] X + [4]       
                     > [1] X + [2]       
                     = from(X)           
          
          
          Following rules are (at-least) weakly oriented:
                     a__add(X1,X2) =  [1] X1 + [2] X2 + [4]         
                                   >= [1] X1 + [1] X2 + [0]         
                                   =  add(X1,X2)                    
          
                     a__add(0(),X) =  [2] X + [5]                   
                                   >= [2] X + [0]                   
                                   =  mark(X)                       
          
                    a__add(s(X),Y) =  [2] Y + [4]                   
                                   >= [0]                           
                                   =  s(add(X,Y))                   
          
                     a__and(X1,X2) =  [1] X1 + [2] X2 + [4]         
                                   >= [1] X1 + [1] X2 + [0]         
                                   =  and(X1,X2)                    
          
                 a__and(false(),Y) =  [2] Y + [4]                   
                                   >= [0]                           
                                   =  false()                       
          
                  a__and(true(),X) =  [2] X + [8]                   
                                   >= [2] X + [0]                   
                                   =  mark(X)                       
          
                   a__first(X1,X2) =  [1] X1 + [1] X2 + [0]         
                                   >= [1] X1 + [1] X2 + [0]         
                                   =  first(X1,X2)                  
          
                   a__first(0(),X) =  [1] X + [1]                   
                                   >= [0]                           
                                   =  nil()                         
          
          a__first(s(X),cons(Y,Z)) =  [1] Y + [0]                   
                                   >= [1] Y + [0]                   
                                   =  cons(Y,first(X,Z))            
          
                   a__if(X1,X2,X3) =  [1] X1 + [2] X2 + [2] X3 + [1]
                                   >= [1] X1 + [1] X2 + [1] X3 + [0]
                                   =  if(X1,X2,X3)                  
          
                a__if(false(),X,Y) =  [2] X + [2] Y + [1]           
                                   >= [2] Y + [0]                   
                                   =  mark(Y)                       
          
                 a__if(true(),X,Y) =  [2] X + [2] Y + [5]           
                                   >= [2] X + [0]                   
                                   =  mark(X)                       
          
                         mark(0()) =  [2]                           
                                   >= [1]                           
                                   =  0()                           
          
                  mark(add(X1,X2)) =  [2] X1 + [2] X2 + [0]         
                                   >= [2] X1 + [2] X2 + [4]         
                                   =  a__add(mark(X1),X2)           
          
                  mark(and(X1,X2)) =  [2] X1 + [2] X2 + [0]         
                                   >= [2] X1 + [2] X2 + [4]         
                                   =  a__and(mark(X1),X2)           
          
                 mark(cons(X1,X2)) =  [2] X1 + [0]                  
                                   >= [1] X1 + [0]                  
                                   =  cons(X1,X2)                   
          
                     mark(false()) =  [0]                           
                                   >= [0]                           
                                   =  false()                       
          
                mark(first(X1,X2)) =  [2] X1 + [2] X2 + [0]         
                                   >= [2] X1 + [2] X2 + [0]         
                                   =  a__first(mark(X1),mark(X2))   
          
                     mark(from(X)) =  [2] X + [4]                   
                                   >= [1] X + [4]                   
                                   =  a__from(X)                    
          
                mark(if(X1,X2,X3)) =  [2] X1 + [2] X2 + [2] X3 + [0]
                                   >= [2] X1 + [2] X2 + [2] X3 + [1]
                                   =  a__if(mark(X1),X2,X3)         
          
                       mark(nil()) =  [0]                           
                                   >= [0]                           
                                   =  nil()                         
          
                        mark(s(X)) =  [0]                           
                                   >= [0]                           
                                   =  s(X)                          
          
                      mark(true()) =  [8]                           
                                   >= [4]                           
                                   =  true()                        
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
* Step 6: WeightGap WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            mark(add(X1,X2)) -> a__add(mark(X1),X2)
            mark(and(X1,X2)) -> a__and(mark(X1),X2)
            mark(if(X1,X2,X3)) -> a__if(mark(X1),X2,X3)
        - Weak TRS:
            a__add(X1,X2) -> add(X1,X2)
            a__add(0(),X) -> mark(X)
            a__add(s(X),Y) -> s(add(X,Y))
            a__and(X1,X2) -> and(X1,X2)
            a__and(false(),Y) -> false()
            a__and(true(),X) -> mark(X)
            a__first(X1,X2) -> first(X1,X2)
            a__first(0(),X) -> nil()
            a__first(s(X),cons(Y,Z)) -> cons(Y,first(X,Z))
            a__from(X) -> cons(X,from(s(X)))
            a__from(X) -> from(X)
            a__if(X1,X2,X3) -> if(X1,X2,X3)
            a__if(false(),X,Y) -> mark(Y)
            a__if(true(),X,Y) -> mark(X)
            mark(0()) -> 0()
            mark(cons(X1,X2)) -> cons(X1,X2)
            mark(false()) -> false()
            mark(first(X1,X2)) -> a__first(mark(X1),mark(X2))
            mark(from(X)) -> a__from(X)
            mark(nil()) -> nil()
            mark(s(X)) -> s(X)
            mark(true()) -> true()
        - Signature:
            {a__add/2,a__and/2,a__first/2,a__from/1,a__if/3,mark/1} / {0/0,add/2,and/2,cons/2,false/0,first/2,from/1
            ,if/3,nil/0,s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__add,a__and,a__first,a__from,a__if
            ,mark} and constructors {0,add,and,cons,false,first,from,if,nil,s,true}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(a__add) = {1},
            uargs(a__and) = {1},
            uargs(a__first) = {1,2},
            uargs(a__if) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                   p(0) = [1]                           
              p(a__add) = [1] x1 + [4] x2 + [4]         
              p(a__and) = [1] x1 + [4] x2 + [1]         
            p(a__first) = [1] x1 + [1] x2 + [0]         
             p(a__from) = [6]                           
               p(a__if) = [1] x1 + [4] x2 + [4] x3 + [2]
                 p(add) = [1] x1 + [1] x2 + [2]         
                 p(and) = [1] x1 + [1] x2 + [0]         
                p(cons) = [0]                           
               p(false) = [1]                           
               p(first) = [1] x1 + [1] x2 + [0]         
                p(from) = [2]                           
                  p(if) = [1] x1 + [1] x2 + [1] x3 + [0]
                p(mark) = [4] x1 + [0]                  
                 p(nil) = [0]                           
                   p(s) = [1]                           
                p(true) = [0]                           
          
          Following rules are strictly oriented:
          mark(add(X1,X2)) = [4] X1 + [4] X2 + [8]
                           > [4] X1 + [4] X2 + [4]
                           = a__add(mark(X1),X2)  
          
          
          Following rules are (at-least) weakly oriented:
                     a__add(X1,X2) =  [1] X1 + [4] X2 + [4]         
                                   >= [1] X1 + [1] X2 + [2]         
                                   =  add(X1,X2)                    
          
                     a__add(0(),X) =  [4] X + [5]                   
                                   >= [4] X + [0]                   
                                   =  mark(X)                       
          
                    a__add(s(X),Y) =  [4] Y + [5]                   
                                   >= [1]                           
                                   =  s(add(X,Y))                   
          
                     a__and(X1,X2) =  [1] X1 + [4] X2 + [1]         
                                   >= [1] X1 + [1] X2 + [0]         
                                   =  and(X1,X2)                    
          
                 a__and(false(),Y) =  [4] Y + [2]                   
                                   >= [1]                           
                                   =  false()                       
          
                  a__and(true(),X) =  [4] X + [1]                   
                                   >= [4] X + [0]                   
                                   =  mark(X)                       
          
                   a__first(X1,X2) =  [1] X1 + [1] X2 + [0]         
                                   >= [1] X1 + [1] X2 + [0]         
                                   =  first(X1,X2)                  
          
                   a__first(0(),X) =  [1] X + [1]                   
                                   >= [0]                           
                                   =  nil()                         
          
          a__first(s(X),cons(Y,Z)) =  [1]                           
                                   >= [0]                           
                                   =  cons(Y,first(X,Z))            
          
                        a__from(X) =  [6]                           
                                   >= [0]                           
                                   =  cons(X,from(s(X)))            
          
                        a__from(X) =  [6]                           
                                   >= [2]                           
                                   =  from(X)                       
          
                   a__if(X1,X2,X3) =  [1] X1 + [4] X2 + [4] X3 + [2]
                                   >= [1] X1 + [1] X2 + [1] X3 + [0]
                                   =  if(X1,X2,X3)                  
          
                a__if(false(),X,Y) =  [4] X + [4] Y + [3]           
                                   >= [4] Y + [0]                   
                                   =  mark(Y)                       
          
                 a__if(true(),X,Y) =  [4] X + [4] Y + [2]           
                                   >= [4] X + [0]                   
                                   =  mark(X)                       
          
                         mark(0()) =  [4]                           
                                   >= [1]                           
                                   =  0()                           
          
                  mark(and(X1,X2)) =  [4] X1 + [4] X2 + [0]         
                                   >= [4] X1 + [4] X2 + [1]         
                                   =  a__and(mark(X1),X2)           
          
                 mark(cons(X1,X2)) =  [0]                           
                                   >= [0]                           
                                   =  cons(X1,X2)                   
          
                     mark(false()) =  [4]                           
                                   >= [1]                           
                                   =  false()                       
          
                mark(first(X1,X2)) =  [4] X1 + [4] X2 + [0]         
                                   >= [4] X1 + [4] X2 + [0]         
                                   =  a__first(mark(X1),mark(X2))   
          
                     mark(from(X)) =  [8]                           
                                   >= [6]                           
                                   =  a__from(X)                    
          
                mark(if(X1,X2,X3)) =  [4] X1 + [4] X2 + [4] X3 + [0]
                                   >= [4] X1 + [4] X2 + [4] X3 + [2]
                                   =  a__if(mark(X1),X2,X3)         
          
                       mark(nil()) =  [0]                           
                                   >= [0]                           
                                   =  nil()                         
          
                        mark(s(X)) =  [4]                           
                                   >= [1]                           
                                   =  s(X)                          
          
                      mark(true()) =  [0]                           
                                   >= [0]                           
                                   =  true()                        
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
* Step 7: WeightGap WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            mark(and(X1,X2)) -> a__and(mark(X1),X2)
            mark(if(X1,X2,X3)) -> a__if(mark(X1),X2,X3)
        - Weak TRS:
            a__add(X1,X2) -> add(X1,X2)
            a__add(0(),X) -> mark(X)
            a__add(s(X),Y) -> s(add(X,Y))
            a__and(X1,X2) -> and(X1,X2)
            a__and(false(),Y) -> false()
            a__and(true(),X) -> mark(X)
            a__first(X1,X2) -> first(X1,X2)
            a__first(0(),X) -> nil()
            a__first(s(X),cons(Y,Z)) -> cons(Y,first(X,Z))
            a__from(X) -> cons(X,from(s(X)))
            a__from(X) -> from(X)
            a__if(X1,X2,X3) -> if(X1,X2,X3)
            a__if(false(),X,Y) -> mark(Y)
            a__if(true(),X,Y) -> mark(X)
            mark(0()) -> 0()
            mark(add(X1,X2)) -> a__add(mark(X1),X2)
            mark(cons(X1,X2)) -> cons(X1,X2)
            mark(false()) -> false()
            mark(first(X1,X2)) -> a__first(mark(X1),mark(X2))
            mark(from(X)) -> a__from(X)
            mark(nil()) -> nil()
            mark(s(X)) -> s(X)
            mark(true()) -> true()
        - Signature:
            {a__add/2,a__and/2,a__first/2,a__from/1,a__if/3,mark/1} / {0/0,add/2,and/2,cons/2,false/0,first/2,from/1
            ,if/3,nil/0,s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__add,a__and,a__first,a__from,a__if
            ,mark} and constructors {0,add,and,cons,false,first,from,if,nil,s,true}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(a__add) = {1},
            uargs(a__and) = {1},
            uargs(a__first) = {1,2},
            uargs(a__if) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                   p(0) = [0]                           
              p(a__add) = [1] x1 + [4] x2 + [6]         
              p(a__and) = [1] x1 + [4] x2 + [2]         
            p(a__first) = [1] x1 + [1] x2 + [4]         
             p(a__from) = [2]                           
               p(a__if) = [1] x1 + [4] x2 + [4] x3 + [2]
                 p(add) = [1] x1 + [1] x2 + [3]         
                 p(and) = [1] x1 + [1] x2 + [2]         
                p(cons) = [2]                           
               p(false) = [0]                           
               p(first) = [1] x1 + [1] x2 + [2]         
                p(from) = [1]                           
                  p(if) = [1] x1 + [1] x2 + [1] x3 + [0]
                p(mark) = [4] x1 + [0]                  
                 p(nil) = [0]                           
                   p(s) = [2]                           
                p(true) = [1]                           
          
          Following rules are strictly oriented:
          mark(and(X1,X2)) = [4] X1 + [4] X2 + [8]
                           > [4] X1 + [4] X2 + [2]
                           = a__and(mark(X1),X2)  
          
          
          Following rules are (at-least) weakly oriented:
                     a__add(X1,X2) =  [1] X1 + [4] X2 + [6]         
                                   >= [1] X1 + [1] X2 + [3]         
                                   =  add(X1,X2)                    
          
                     a__add(0(),X) =  [4] X + [6]                   
                                   >= [4] X + [0]                   
                                   =  mark(X)                       
          
                    a__add(s(X),Y) =  [4] Y + [8]                   
                                   >= [2]                           
                                   =  s(add(X,Y))                   
          
                     a__and(X1,X2) =  [1] X1 + [4] X2 + [2]         
                                   >= [1] X1 + [1] X2 + [2]         
                                   =  and(X1,X2)                    
          
                 a__and(false(),Y) =  [4] Y + [2]                   
                                   >= [0]                           
                                   =  false()                       
          
                  a__and(true(),X) =  [4] X + [3]                   
                                   >= [4] X + [0]                   
                                   =  mark(X)                       
          
                   a__first(X1,X2) =  [1] X1 + [1] X2 + [4]         
                                   >= [1] X1 + [1] X2 + [2]         
                                   =  first(X1,X2)                  
          
                   a__first(0(),X) =  [1] X + [4]                   
                                   >= [0]                           
                                   =  nil()                         
          
          a__first(s(X),cons(Y,Z)) =  [8]                           
                                   >= [2]                           
                                   =  cons(Y,first(X,Z))            
          
                        a__from(X) =  [2]                           
                                   >= [2]                           
                                   =  cons(X,from(s(X)))            
          
                        a__from(X) =  [2]                           
                                   >= [1]                           
                                   =  from(X)                       
          
                   a__if(X1,X2,X3) =  [1] X1 + [4] X2 + [4] X3 + [2]
                                   >= [1] X1 + [1] X2 + [1] X3 + [0]
                                   =  if(X1,X2,X3)                  
          
                a__if(false(),X,Y) =  [4] X + [4] Y + [2]           
                                   >= [4] Y + [0]                   
                                   =  mark(Y)                       
          
                 a__if(true(),X,Y) =  [4] X + [4] Y + [3]           
                                   >= [4] X + [0]                   
                                   =  mark(X)                       
          
                         mark(0()) =  [0]                           
                                   >= [0]                           
                                   =  0()                           
          
                  mark(add(X1,X2)) =  [4] X1 + [4] X2 + [12]        
                                   >= [4] X1 + [4] X2 + [6]         
                                   =  a__add(mark(X1),X2)           
          
                 mark(cons(X1,X2)) =  [8]                           
                                   >= [2]                           
                                   =  cons(X1,X2)                   
          
                     mark(false()) =  [0]                           
                                   >= [0]                           
                                   =  false()                       
          
                mark(first(X1,X2)) =  [4] X1 + [4] X2 + [8]         
                                   >= [4] X1 + [4] X2 + [4]         
                                   =  a__first(mark(X1),mark(X2))   
          
                     mark(from(X)) =  [4]                           
                                   >= [2]                           
                                   =  a__from(X)                    
          
                mark(if(X1,X2,X3)) =  [4] X1 + [4] X2 + [4] X3 + [0]
                                   >= [4] X1 + [4] X2 + [4] X3 + [2]
                                   =  a__if(mark(X1),X2,X3)         
          
                       mark(nil()) =  [0]                           
                                   >= [0]                           
                                   =  nil()                         
          
                        mark(s(X)) =  [8]                           
                                   >= [2]                           
                                   =  s(X)                          
          
                      mark(true()) =  [4]                           
                                   >= [1]                           
                                   =  true()                        
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
* Step 8: WeightGap WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            mark(if(X1,X2,X3)) -> a__if(mark(X1),X2,X3)
        - Weak TRS:
            a__add(X1,X2) -> add(X1,X2)
            a__add(0(),X) -> mark(X)
            a__add(s(X),Y) -> s(add(X,Y))
            a__and(X1,X2) -> and(X1,X2)
            a__and(false(),Y) -> false()
            a__and(true(),X) -> mark(X)
            a__first(X1,X2) -> first(X1,X2)
            a__first(0(),X) -> nil()
            a__first(s(X),cons(Y,Z)) -> cons(Y,first(X,Z))
            a__from(X) -> cons(X,from(s(X)))
            a__from(X) -> from(X)
            a__if(X1,X2,X3) -> if(X1,X2,X3)
            a__if(false(),X,Y) -> mark(Y)
            a__if(true(),X,Y) -> mark(X)
            mark(0()) -> 0()
            mark(add(X1,X2)) -> a__add(mark(X1),X2)
            mark(and(X1,X2)) -> a__and(mark(X1),X2)
            mark(cons(X1,X2)) -> cons(X1,X2)
            mark(false()) -> false()
            mark(first(X1,X2)) -> a__first(mark(X1),mark(X2))
            mark(from(X)) -> a__from(X)
            mark(nil()) -> nil()
            mark(s(X)) -> s(X)
            mark(true()) -> true()
        - Signature:
            {a__add/2,a__and/2,a__first/2,a__from/1,a__if/3,mark/1} / {0/0,add/2,and/2,cons/2,false/0,first/2,from/1
            ,if/3,nil/0,s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__add,a__and,a__first,a__from,a__if
            ,mark} and constructors {0,add,and,cons,false,first,from,if,nil,s,true}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(a__add) = {1},
            uargs(a__and) = {1},
            uargs(a__first) = {1,2},
            uargs(a__if) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                   p(0) = [2]                           
              p(a__add) = [1] x1 + [4] x2 + [4]         
              p(a__and) = [1] x1 + [4] x2 + [0]         
            p(a__first) = [1] x1 + [1] x2 + [7]         
             p(a__from) = [2] x1 + [1]                  
               p(a__if) = [1] x1 + [4] x2 + [4] x3 + [1]
                 p(add) = [1] x1 + [1] x2 + [2]         
                 p(and) = [1] x1 + [1] x2 + [0]         
                p(cons) = [1]                           
               p(false) = [1]                           
               p(first) = [1] x1 + [1] x2 + [3]         
                p(from) = [1] x1 + [1]                  
                  p(if) = [1] x1 + [1] x2 + [1] x3 + [1]
                p(mark) = [4] x1 + [0]                  
                 p(nil) = [0]                           
                   p(s) = [1] x1 + [1]                  
                p(true) = [0]                           
          
          Following rules are strictly oriented:
          mark(if(X1,X2,X3)) = [4] X1 + [4] X2 + [4] X3 + [4]
                             > [4] X1 + [4] X2 + [4] X3 + [1]
                             = a__if(mark(X1),X2,X3)         
          
          
          Following rules are (at-least) weakly oriented:
                     a__add(X1,X2) =  [1] X1 + [4] X2 + [4]         
                                   >= [1] X1 + [1] X2 + [2]         
                                   =  add(X1,X2)                    
          
                     a__add(0(),X) =  [4] X + [6]                   
                                   >= [4] X + [0]                   
                                   =  mark(X)                       
          
                    a__add(s(X),Y) =  [1] X + [4] Y + [5]           
                                   >= [1] X + [1] Y + [3]           
                                   =  s(add(X,Y))                   
          
                     a__and(X1,X2) =  [1] X1 + [4] X2 + [0]         
                                   >= [1] X1 + [1] X2 + [0]         
                                   =  and(X1,X2)                    
          
                 a__and(false(),Y) =  [4] Y + [1]                   
                                   >= [1]                           
                                   =  false()                       
          
                  a__and(true(),X) =  [4] X + [0]                   
                                   >= [4] X + [0]                   
                                   =  mark(X)                       
          
                   a__first(X1,X2) =  [1] X1 + [1] X2 + [7]         
                                   >= [1] X1 + [1] X2 + [3]         
                                   =  first(X1,X2)                  
          
                   a__first(0(),X) =  [1] X + [9]                   
                                   >= [0]                           
                                   =  nil()                         
          
          a__first(s(X),cons(Y,Z)) =  [1] X + [9]                   
                                   >= [1]                           
                                   =  cons(Y,first(X,Z))            
          
                        a__from(X) =  [2] X + [1]                   
                                   >= [1]                           
                                   =  cons(X,from(s(X)))            
          
                        a__from(X) =  [2] X + [1]                   
                                   >= [1] X + [1]                   
                                   =  from(X)                       
          
                   a__if(X1,X2,X3) =  [1] X1 + [4] X2 + [4] X3 + [1]
                                   >= [1] X1 + [1] X2 + [1] X3 + [1]
                                   =  if(X1,X2,X3)                  
          
                a__if(false(),X,Y) =  [4] X + [4] Y + [2]           
                                   >= [4] Y + [0]                   
                                   =  mark(Y)                       
          
                 a__if(true(),X,Y) =  [4] X + [4] Y + [1]           
                                   >= [4] X + [0]                   
                                   =  mark(X)                       
          
                         mark(0()) =  [8]                           
                                   >= [2]                           
                                   =  0()                           
          
                  mark(add(X1,X2)) =  [4] X1 + [4] X2 + [8]         
                                   >= [4] X1 + [4] X2 + [4]         
                                   =  a__add(mark(X1),X2)           
          
                  mark(and(X1,X2)) =  [4] X1 + [4] X2 + [0]         
                                   >= [4] X1 + [4] X2 + [0]         
                                   =  a__and(mark(X1),X2)           
          
                 mark(cons(X1,X2)) =  [4]                           
                                   >= [1]                           
                                   =  cons(X1,X2)                   
          
                     mark(false()) =  [4]                           
                                   >= [1]                           
                                   =  false()                       
          
                mark(first(X1,X2)) =  [4] X1 + [4] X2 + [12]        
                                   >= [4] X1 + [4] X2 + [7]         
                                   =  a__first(mark(X1),mark(X2))   
          
                     mark(from(X)) =  [4] X + [4]                   
                                   >= [2] X + [1]                   
                                   =  a__from(X)                    
          
                       mark(nil()) =  [0]                           
                                   >= [0]                           
                                   =  nil()                         
          
                        mark(s(X)) =  [4] X + [4]                   
                                   >= [1] X + [1]                   
                                   =  s(X)                          
          
                      mark(true()) =  [0]                           
                                   >= [0]                           
                                   =  true()                        
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
* Step 9: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            a__add(X1,X2) -> add(X1,X2)
            a__add(0(),X) -> mark(X)
            a__add(s(X),Y) -> s(add(X,Y))
            a__and(X1,X2) -> and(X1,X2)
            a__and(false(),Y) -> false()
            a__and(true(),X) -> mark(X)
            a__first(X1,X2) -> first(X1,X2)
            a__first(0(),X) -> nil()
            a__first(s(X),cons(Y,Z)) -> cons(Y,first(X,Z))
            a__from(X) -> cons(X,from(s(X)))
            a__from(X) -> from(X)
            a__if(X1,X2,X3) -> if(X1,X2,X3)
            a__if(false(),X,Y) -> mark(Y)
            a__if(true(),X,Y) -> mark(X)
            mark(0()) -> 0()
            mark(add(X1,X2)) -> a__add(mark(X1),X2)
            mark(and(X1,X2)) -> a__and(mark(X1),X2)
            mark(cons(X1,X2)) -> cons(X1,X2)
            mark(false()) -> false()
            mark(first(X1,X2)) -> a__first(mark(X1),mark(X2))
            mark(from(X)) -> a__from(X)
            mark(if(X1,X2,X3)) -> a__if(mark(X1),X2,X3)
            mark(nil()) -> nil()
            mark(s(X)) -> s(X)
            mark(true()) -> true()
        - Signature:
            {a__add/2,a__and/2,a__first/2,a__from/1,a__if/3,mark/1} / {0/0,add/2,and/2,cons/2,false/0,first/2,from/1
            ,if/3,nil/0,s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__add,a__and,a__first,a__from,a__if
            ,mark} and constructors {0,add,and,cons,false,first,from,if,nil,s,true}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(?,O(n^1))